CryoSPARC Guide
  • About CryoSPARC
  • Current Version
  • Licensing
    • Non-commercial license agreement
  • Setup, Configuration and Management
    • CryoSPARC Architecture and System Requirements
    • CryoSPARC Installation Prerequisites
    • How to Download, Install and Configure
      • Obtaining A License ID
      • Downloading and Installing CryoSPARC
      • CryoSPARC Cluster Integration Script Examples
      • Accessing the CryoSPARC User Interface
    • Deploying CryoSPARC on AWS
      • Performance Benchmarks
    • Using CryoSPARC with Cluster Management Software
    • Software Updates and Patches
    • Management and Monitoring
      • Environment variables
      • (Optional) Hosting CryoSPARC Through a Reverse Proxy
      • cryosparcm reference
      • cryosparcm cli reference
      • cryosparcw reference
    • Software System Guides
      • Guide: Updating to CryoSPARC v4
      • Guide: Installation Testing with cryosparcm test
      • Guide: Verify CryoSPARC Installation with the Extensive Validation Job (v4.3+)
      • Guide: Verify CryoSPARC Installation with the Extensive Workflow (≤v4.2)
      • Guide: Performance Benchmarking (v4.3+)
      • Guide: Download Error Reports
      • Guide: Maintenance Mode and Configurable User Facing Messages
      • Guide: User Management
      • Guide: Multi-user Unix Permissions and Data Access Control
      • Guide: Lane Assignments and Restrictions
      • Guide: Queuing Directly to a GPU
      • Guide: Priority Job Queuing
      • Guide: Configuring Custom Variables for Cluster Job Submission Scripts
      • Guide: SSD Particle Caching in CryoSPARC
      • Guide: Data Management in CryoSPARC (v4.0+)
      • Guide: Data Cleanup (v4.3+)
      • Guide: Reduce Database Size (v4.3+)
      • Guide: Data Management in CryoSPARC (≤v3.3)
      • Guide: CryoSPARC Live Session Data Management
      • Guide: Manipulating .cs Files Created By CryoSPARC
      • Guide: Migrating your CryoSPARC Instance
      • Guide: EMDB-friendly XML file for FSC plots
    • Troubleshooting
  • Application Guide (v4.0+)
    • A Tour of the CryoSPARC Interface
    • Browsing the CryoSPARC Instance
    • Projects, Workspaces and Live Sessions
    • Jobs
    • Job Views: Cards, Tree, and Table
    • Creating and Running Jobs
    • Low Level Results Interface
    • Filters and Sorting
    • View Options
    • Tags
    • Flat vs Hierarchical Navigation
    • File Browser
    • Blueprints
    • Workflows
    • Inspecting Data
    • Managing Jobs
    • Interactive Jobs
    • Upload Local Files
    • Managing Data
    • Downloading and Exporting Data
    • Instance Management
    • Admin Panel
  • Cryo-EM Foundations
    • Image Formation
      • Contrast in Cryo-EM
      • Waves as Vectors
      • Aliasing
  • Expectation Maximization in Cryo-EM
  • Processing Data in cryoSPARC
    • Get Started with CryoSPARC: Introductory Tutorial (v4.0+)
    • Tutorial Videos
    • All Job Types in CryoSPARC
      • Import
        • Job: Import Movies
        • Job: Import Micrographs
        • Job: Import Particle Stack
        • Job: Import 3D Volumes
        • Job: Import Templates
        • Job: Import Result Group
        • Job: Import Beam Shift
      • Motion Correction
        • Job: Patch Motion Correction
        • Job: Full-Frame Motion Correction
        • Job: Local Motion Correction
        • Job: MotionCor2 (Wrapper) (BETA)
        • Job: Reference Based Motion Correction (BETA)
      • CTF Estimation
        • Job: Patch CTF Estimation
        • Job: Patch CTF Extraction
        • Job: CTFFIND4 (Wrapper)
        • Job: Gctf (Wrapper) (Legacy)
      • Exposure Curation
        • Job: Micrograph Denoiser (BETA)
        • Job: Micrograph Junk Detector (BETA)
        • Interactive Job: Manually Curate Exposures
      • Particle Picking
        • Interactive Job: Manual Picker
        • Job: Blob Picker
        • Job: Template Picker
        • Job: Filament Tracer
        • Job: Blob Picker Tuner
        • Interactive Job: Inspect Particle Picks
        • Job: Create Templates
      • Extraction
        • Job: Extract from Micrographs
        • Job: Downsample Particles
        • Job: Restack Particles
      • Deep Picking
        • Guideline for Supervised Particle Picking using Deep Learning Models
        • Deep Network Particle Picker
          • T20S Proteasome: Deep Particle Picking Tutorial
          • Job: Deep Picker Train and Job: Deep Picker Inference
        • Topaz (Bepler, et al)
          • T20S Proteasome: Topaz Particle Picking Tutorial
          • T20S Proteasome: Topaz Micrograph Denoising Tutorial
          • Job: Topaz Train and Job: Topaz Cross Validation
          • Job: Topaz Extract
          • Job: Topaz Denoise
      • Particle Curation
        • Job: 2D Classification
        • Interactive Job: Select 2D Classes
        • Job: Reference Based Auto Select 2D (BETA)
        • Job: Reconstruct 2D Classes
        • Job: Rebalance 2D Classes
        • Job: Class Probability Filter (Legacy)
        • Job: Rebalance Orientations
        • Job: Subset Particles by Statistic
      • 3D Reconstruction
        • Job: Ab-Initio Reconstruction
      • 3D Refinement
        • Job: Homogeneous Refinement
        • Job: Heterogeneous Refinement
        • Job: Non-Uniform Refinement
        • Job: Homogeneous Reconstruction Only
        • Job: Heterogeneous Reconstruction Only
        • Job: Homogeneous Refinement (Legacy)
        • Job: Non-uniform Refinement (Legacy)
      • CTF Refinement
        • Job: Global CTF Refinement
        • Job: Local CTF Refinement
        • Job: Exposure Group Utilities
      • Conformational Variability
        • Job: 3D Variability
        • Job: 3D Variability Display
        • Job: 3D Classification
        • Job: Regroup 3D Classes
        • Job: Reference Based Auto Select 3D (BETA)
        • Job: 3D Flexible Refinement (3DFlex) (BETA)
      • Postprocessing
        • Job: Sharpening Tools
        • Job: DeepEMhancer (Wrapper)
        • Job: Validation (FSC)
        • Job: Local Resolution Estimation
        • Job: Local Filtering
        • Job: ResLog Analysis
        • Job: ThreeDFSC (Wrapper) (Legacy)
      • Local Refinement
        • Job: Local Refinement
        • Job: Particle Subtraction
        • Job: Local Refinement (Legacy)
      • Helical Reconstruction
        • Helical symmetry in CryoSPARC
        • Job: Helical Refinement
        • Job: Symmetry search utility
        • Job: Average Power Spectra
      • Utilities
        • Job: Exposure Sets Tool
        • Job: Exposure Tools
        • Job: Generate Micrograph Thumbnails
        • Job: Cache Particles on SSD
        • Job: Check for Corrupt Particles
        • Job: Particle Sets Tool
        • Job: Reassign Particles to Micrographs
        • Job: Remove Duplicate Particles
        • Job: Symmetry Expansion
        • Job: Volume Tools
        • Job: Volume Alignment Tools
        • Job: Align 3D maps
        • Job: Split Volumes Group
        • Job: Orientation Diagnostics
      • Simulations
        • Job: Simulate Data (GPU)
        • Job: Simulate Data (Legacy)
    • CryoSPARC Tools
    • Data Processing Tutorials
      • Case study: End-to-end processing of a ligand-bound GPCR (EMPIAR-10853)
      • Case Study: DkTx-bound TRPV1 (EMPIAR-10059)
      • Case Study: Pseudosymmetry in TRPV5 and Calmodulin (EMPIAR-10256)
      • Case Study: End-to-end processing of an inactive GPCR (EMPIAR-10668)
      • Case Study: End-to-end processing of encapsulated ferritin (EMPIAR-10716)
      • Case Study: Exploratory data processing by Oliver Clarke
      • Tutorial: Tips for Membrane Protein Structures
      • Tutorial: Common CryoSPARC Plots
      • Tutorial: Negative Stain Data
      • Tutorial: Phase Plate Data
      • Tutorial: EER File Support
      • Tutorial: EPU AFIS Beam Shift Import
      • Tutorial: Patch Motion and Patch CTF
      • Tutorial: Float16 Support
      • Tutorial: Particle Picking Calibration
      • Tutorial: Blob Picker Tuner
      • Tutorial: Helical Processing using EMPIAR-10031 (MAVS)
      • Tutorial: Maximum Box Sizes for Refinement
      • Tutorial: CTF Refinement
      • Tutorial: Ewald Sphere Correction
      • Tutorial: Symmetry Relaxation
      • Tutorial: Orientation Diagnostics
      • Tutorial: BILD files in CryoSPARC v4.4+
      • Tutorial: Mask Creation
      • Case Study: Yeast U4/U6.U5 tri-snRNP
      • Tutorial: 3D Classification
      • Tutorial: 3D Variability Analysis (Part One)
      • Tutorial: 3D Variability Analysis (Part Two)
      • Tutorial: 3D Flexible Refinement
        • Installing 3DFlex Dependencies (v4.1–v4.3)
      • Tutorial: 3D Flex Mesh Preparation
    • Webinar Recordings
  • Real-time processing in cryoSPARC Live
    • About CryoSPARC Live
    • Prerequisites and Compute Resources Setup
    • How to Access cryoSPARC Live
    • UI Overview
    • New Live Session: Start to Finish Guide
    • CryoSPARC Live Tutorial Videos
    • Live Jobs and Session-Level Functions
    • Performance Metrics
    • Managing a CryoSPARC Live Session from the CLI
    • FAQs and Troubleshooting
  • Guides for v3
    • v3 User Interface Guide
      • Dashboard
      • Project and Workspace Management
      • Create and Build Jobs
      • Queue Job, Inspect Job and Other Job Actions
      • View and Download Results
      • Job Relationships
      • Resource Manager
      • User Management
    • Tutorial: Job Builder
    • Get Started with CryoSPARC: Introductory Tutorial (v3)
    • Tutorial: Manually Curate Exposures (v3)
  • Resources
    • Questions and Support
Powered by GitBook
On this page
  • What is CryoSPARC?
  • What is CryoSPARC Live?
  • CryoSPARC and CryoSPARC Live enable:
  • Licensing
  • Citation
  • CryoSPARC algorithms
  • CryoSPARC implementations
  • Wrappers to third-party tools
  • Dependencies
  • CryoSPARC in Scientific Studies
  • Development
  • Major Version History

About CryoSPARC

General information about the software platform.

NextLicensing

Last updated 1 month ago

What is CryoSPARC?

CryoSPARC (Cryo-EM Single Particle Ab-Initio Reconstruction and Classification) is a state of the art data analysis solution for single-particle analysis (SPA) in cryo-electron microscopy (cryo-EM). CryoSPARC is used to reconstruct and visualize cryo-EM structures of biological targets including membrane proteins, viruses and complexes.

What is CryoSPARC Live?

CryoSPARC Live is a software platform that enables:

  • Real-time cryo-EM data quality assessment

  • Decision making based on 2D and 3D results during live data collection

  • An expedited, streamlined workflow for processing previously collected data

  • Direct seamless interoperation with CryoSPARC for advanced processing

CryoSPARC and CryoSPARC Live enable:

  • Real-time cryo-EM data quality assessment and decision making during live data collection

  • End-to-end processing of raw cryo-EM data and reconstruction of 3D maps, ready for further analysis in model building software

  • Optimized algorithms and GPU acceleration at all stages, from pre-processing through particle picking, 2D particle classification, 3D ab-initio structure determination, high resolution refinement, and heterogeneity analysis

  • Specialized and unique tools for therapeutically relevant targets, membrane proteins, continuously flexible structures

  • Interactive, visual and iterative experimentation for even the most complex workflows

Licensing

Licensing is available for non-profit academic use and commercial use. Please see:

Citation

If you use CryoSPARC in your work, please cite as follows.

CryoSPARC algorithms

Please cite the following papers as appropriate:

CryoSPARC implementations

Wrappers to third-party tools

Users should obtain their own software licenses (as applicable) for the below programs, for which wrappers are available in CryoSPARC.

  • DeepEMhancer: R. Sanchez-Garcia, J. Gomez-Blanco, A. Cuervo et al., “DeepEMhancer: a deep learning solution for cryo-EM volume post-processing”, Communications Biology, vol. 4, no. 874, 2021. Available: 10.1038/s42003-021-02399-1.

Dependencies

cuDNN

scikit-cuda

Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. Neither the name of Lev E. Givon nor the names of any contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

CryoSPARC in Scientific Studies

Hundreds of structural studies have used CryoSPARC for cryo-EM data processing:

Development

By combining our expertise in image processing, algorithm development and professional software engineering, we aim to keep CryoSPARC at the forefront of software for cryo-EM. To that end, we are constantly working on new algorithms and software features which we release on an ongoing basis. CryoSPARC's GPU-accelerated code is written entirely from scratch in-house, with exception of certain wrappers to third party tools that are clearly indicated in the documentation. Many of the algorithms in CryoSPARC are novel developments for cryo-EM image processing and links to publications can be found throughout this documentation.

Major Version History

  • CryoSPARC v2.0 (released August 17, 2018) was followed by a number of new releases up to v2.15.0 (released May 13, 2020).

  • CryoSPARC v0.2.1 was the first public version of CryoSPARC (released February 7, 2017) and was followed by a number of new releases up to v0.6.5 (released January 12, 2018).

General CryoSPARC/CryoSPARC Live use, including preprocessing, 2D classification, Ab-initio reconstruction, Refinement:

Local (per-particle) motion correction:

Non-uniform refinement:

3D Variability Analysis:

3D Flexible Refinement:

ResLog analysis:

CTF refinement and aberration correction:

MotionCor2: Shawn Q. Zheng, Eugene Palovcak, Jean-Paul Armache, Yifan Cheng and David A. Agard (2016) Anisotropic Correction of Beam-induced Motion for Improved Single-particle Electron Cryo-microscopy, Nature Methods, submitted. BioArxiv:

CTFFIND:

Gctf: Gctf: Jack (Kai) Zhang. Zhang, K. (2016). Gctf : Real-time CTF determination and correction. Journal of Structural Biology, 193(1), 1-12.

Topaz: Bepler, T., Morin, A., Rapp, M. et al. Positive-unlabeled convolutional neural networks for particle picking in cryo-electron micrographs. Nat Methods 16, 1153–1160 (2019) doi:10.1038/s41592-019-0575-8 and Bepler, T., Noble, A.J., Berger, B. Topaz-Denoise: general deep denoising models for cryoEM. bioRxiv 838920 (2019) doi:

3DFSC:

libcudnn.so.8 is distributed with CryoSPARC as of v3.2, pursuant to the terms of NVIDIA's Software License Agreement (SLA) for cuDNN:

A modified version of scikit-cuda is included with cryosparc_compute as of v3.2, pursuant to the scikit-cuda license terms:

CryoSPARC was originally a research project with origins at the University of Toronto in 2014. As of 2016, all research and development for CryoSPARC is done by , a scientific software company based in Toronto, Canada.

CryoSPARC v4.0 was released on October 3, 2022 and has been followed by several subsequent releases up to v4.7. For release notes, see:

CryoSPARC v3.0 was released on December 9, 2020 and has been followed by subsequent version v3.1, v3.2 and v3.3. For release notes, see:

Licensing
Punjani, A., Rubinstein, J.L., Fleet, D.J. & Brubaker, M.A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nature Methods 14, 290-296 (2017).
Rubinstein, J.L. & Brubaker, M.A. Alignment of cryo-EM movies of individual particles by optimization of image translations. Journal of Structural Biology 192 (2), 188-195 (2015).
Punjani, A., Zhang, H. & Fleet, D.J. Non-uniform refinement: adaptive regularization improves single-particle cryo-EM reconstruction. Nat Methods 17, 1214–1221 (2020).
Punjani, A. & Fleet, D.J. 3D variability analysis: Resolving continuous flexibility and discrete heterogeneity from single particle cryo-EM. Journal of Structural Biology, Volume 213, Issue 2, 2021. https://doi.org/10.1016/j.jsb.2021.107702
Punjani, A. & Fleet, D.J. 3DFlex: determining structure and motion of flexible proteins from cryo-EM. Nature Methods (2023). https://doi.org/10.1038/s41592-023-01853-8
Stagg, S.M., Noble, A.J., Spilman, M. & Chapman, M.S. ResLog plots as an empirical metric of the quality of cryo-EM reconstructions. Journal of Structural Biology 185 (3), 418-426 (2014).
Zivanov, J., Nakane, T. & Scheres, S. H. W. Estimation of high-order aberrations and anisotropic magnification from cryo-EM data sets in RELION-3.1. IUCrJ 7, 253-267 (2020).
http://biorxiv.org/content/early/2016/07/04/061960
Rohou, A. & Grigorieff, N. CTFFIND4: Fast and accurate defocus estimation from electron micrographs. Journal of Structural Biology 192 (2), 216-221 (2015).
https://doi.org/10.1016/j.jsb.2015.11.003
https://doi.org/10.1101/838920
Tan, Y.Z., Baldwin, P.R., Davis, J.H., Williamson, J.R., Potter, C.S., Carragher, B. & Lyumkis, D. Addressing preferred specimen orientation in single-particle cryo-EM through tilting. Nature Methods 14, 793-796 (2017).
https://docs.nvidia.com/deeplearning/cudnn/sla/index.html
https://scikit-cuda.readthedocs.io/en/latest/
Google Scholar: cryoSPARC
Structura Biotechnology Inc.
https://cryosparc.com/updates
https://cryosparc.com/updates
The CryoSPARC interface.