CryoSPARC Guide
  • About CryoSPARC
  • Current Version
  • Licensing
    • Non-commercial license agreement
  • Setup, Configuration and Management
    • CryoSPARC Architecture and System Requirements
    • CryoSPARC Installation Prerequisites
    • How to Download, Install and Configure
      • Obtaining A License ID
      • Downloading and Installing CryoSPARC
      • CryoSPARC Cluster Integration Script Examples
      • Accessing the CryoSPARC User Interface
    • Deploying CryoSPARC on AWS
      • Performance Benchmarks
    • Using CryoSPARC with Cluster Management Software
    • Software Updates and Patches
    • Management and Monitoring
      • Environment variables
      • (Optional) Hosting CryoSPARC Through a Reverse Proxy
      • cryosparcm reference
      • cryosparcm cli reference
      • cryosparcw reference
    • Software System Guides
      • Guide: Updating to CryoSPARC v4
      • Guide: Installation Testing with cryosparcm test
      • Guide: Verify CryoSPARC Installation with the Extensive Validation Job (v4.3+)
      • Guide: Verify CryoSPARC Installation with the Extensive Workflow (≤v4.2)
      • Guide: Performance Benchmarking (v4.3+)
      • Guide: Download Error Reports
      • Guide: Maintenance Mode and Configurable User Facing Messages
      • Guide: User Management
      • Guide: Multi-user Unix Permissions and Data Access Control
      • Guide: Lane Assignments and Restrictions
      • Guide: Queuing Directly to a GPU
      • Guide: Priority Job Queuing
      • Guide: Configuring Custom Variables for Cluster Job Submission Scripts
      • Guide: SSD Particle Caching in CryoSPARC
      • Guide: Data Management in CryoSPARC (v4.0+)
      • Guide: Data Cleanup (v4.3+)
      • Guide: Reduce Database Size (v4.3+)
      • Guide: Data Management in CryoSPARC (≤v3.3)
      • Guide: CryoSPARC Live Session Data Management
      • Guide: Manipulating .cs Files Created By CryoSPARC
      • Guide: Migrating your CryoSPARC Instance
      • Guide: EMDB-friendly XML file for FSC plots
    • Troubleshooting
  • Application Guide (v4.0+)
    • A Tour of the CryoSPARC Interface
    • Browsing the CryoSPARC Instance
    • Projects, Workspaces and Live Sessions
    • Jobs
    • Job Views: Cards, Tree, and Table
    • Creating and Running Jobs
    • Low Level Results Interface
    • Filters and Sorting
    • View Options
    • Tags
    • Flat vs Hierarchical Navigation
    • File Browser
    • Blueprints
    • Workflows
    • Inspecting Data
    • Managing Jobs
    • Interactive Jobs
    • Upload Local Files
    • Managing Data
    • Downloading and Exporting Data
    • Instance Management
    • Admin Panel
  • Cryo-EM Foundations
    • Image Formation
      • Contrast in Cryo-EM
      • Waves as Vectors
      • Aliasing
  • Expectation Maximization in Cryo-EM
  • Processing Data in cryoSPARC
    • Get Started with CryoSPARC: Introductory Tutorial (v4.0+)
    • Tutorial Videos
    • All Job Types in CryoSPARC
      • Import
        • Job: Import Movies
        • Job: Import Micrographs
        • Job: Import Particle Stack
        • Job: Import 3D Volumes
        • Job: Import Templates
        • Job: Import Result Group
        • Job: Import Beam Shift
      • Motion Correction
        • Job: Patch Motion Correction
        • Job: Full-Frame Motion Correction
        • Job: Local Motion Correction
        • Job: MotionCor2 (Wrapper) (BETA)
        • Job: Reference Based Motion Correction (BETA)
      • CTF Estimation
        • Job: Patch CTF Estimation
        • Job: Patch CTF Extraction
        • Job: CTFFIND4 (Wrapper)
        • Job: Gctf (Wrapper) (Legacy)
      • Exposure Curation
        • Job: Micrograph Denoiser (BETA)
        • Job: Micrograph Junk Detector (BETA)
        • Interactive Job: Manually Curate Exposures
      • Particle Picking
        • Interactive Job: Manual Picker
        • Job: Blob Picker
        • Job: Template Picker
        • Job: Filament Tracer
        • Job: Blob Picker Tuner
        • Interactive Job: Inspect Particle Picks
        • Job: Create Templates
      • Extraction
        • Job: Extract from Micrographs
        • Job: Downsample Particles
        • Job: Restack Particles
      • Deep Picking
        • Guideline for Supervised Particle Picking using Deep Learning Models
        • Deep Network Particle Picker
          • T20S Proteasome: Deep Particle Picking Tutorial
          • Job: Deep Picker Train and Job: Deep Picker Inference
        • Topaz (Bepler, et al)
          • T20S Proteasome: Topaz Particle Picking Tutorial
          • T20S Proteasome: Topaz Micrograph Denoising Tutorial
          • Job: Topaz Train and Job: Topaz Cross Validation
          • Job: Topaz Extract
          • Job: Topaz Denoise
      • Particle Curation
        • Job: 2D Classification
        • Interactive Job: Select 2D Classes
        • Job: Reference Based Auto Select 2D (BETA)
        • Job: Reconstruct 2D Classes
        • Job: Rebalance 2D Classes
        • Job: Class Probability Filter (Legacy)
        • Job: Rebalance Orientations
        • Job: Subset Particles by Statistic
      • 3D Reconstruction
        • Job: Ab-Initio Reconstruction
      • 3D Refinement
        • Job: Homogeneous Refinement
        • Job: Heterogeneous Refinement
        • Job: Non-Uniform Refinement
        • Job: Homogeneous Reconstruction Only
        • Job: Heterogeneous Reconstruction Only
        • Job: Homogeneous Refinement (Legacy)
        • Job: Non-uniform Refinement (Legacy)
      • CTF Refinement
        • Job: Global CTF Refinement
        • Job: Local CTF Refinement
        • Job: Exposure Group Utilities
      • Conformational Variability
        • Job: 3D Variability
        • Job: 3D Variability Display
        • Job: 3D Classification
        • Job: Regroup 3D Classes
        • Job: Reference Based Auto Select 3D (BETA)
        • Job: 3D Flexible Refinement (3DFlex) (BETA)
      • Postprocessing
        • Job: Sharpening Tools
        • Job: DeepEMhancer (Wrapper)
        • Job: Validation (FSC)
        • Job: Local Resolution Estimation
        • Job: Local Filtering
        • Job: ResLog Analysis
        • Job: ThreeDFSC (Wrapper) (Legacy)
      • Local Refinement
        • Job: Local Refinement
        • Job: Particle Subtraction
        • Job: Local Refinement (Legacy)
      • Helical Reconstruction
        • Helical symmetry in CryoSPARC
        • Job: Helical Refinement
        • Job: Symmetry search utility
        • Job: Average Power Spectra
      • Utilities
        • Job: Exposure Sets Tool
        • Job: Exposure Tools
        • Job: Generate Micrograph Thumbnails
        • Job: Cache Particles on SSD
        • Job: Check for Corrupt Particles
        • Job: Particle Sets Tool
        • Job: Reassign Particles to Micrographs
        • Job: Remove Duplicate Particles
        • Job: Symmetry Expansion
        • Job: Volume Tools
        • Job: Volume Alignment Tools
        • Job: Align 3D maps
        • Job: Split Volumes Group
        • Job: Orientation Diagnostics
      • Simulations
        • Job: Simulate Data (GPU)
        • Job: Simulate Data (Legacy)
    • CryoSPARC Tools
    • Data Processing Tutorials
      • Case study: End-to-end processing of a ligand-bound GPCR (EMPIAR-10853)
      • Case Study: DkTx-bound TRPV1 (EMPIAR-10059)
      • Case Study: Pseudosymmetry in TRPV5 and Calmodulin (EMPIAR-10256)
      • Case Study: End-to-end processing of an inactive GPCR (EMPIAR-10668)
      • Case Study: End-to-end processing of encapsulated ferritin (EMPIAR-10716)
      • Case Study: Exploratory data processing by Oliver Clarke
      • Tutorial: Tips for Membrane Protein Structures
      • Tutorial: Common CryoSPARC Plots
      • Tutorial: Negative Stain Data
      • Tutorial: Phase Plate Data
      • Tutorial: EER File Support
      • Tutorial: EPU AFIS Beam Shift Import
      • Tutorial: Patch Motion and Patch CTF
      • Tutorial: Float16 Support
      • Tutorial: Particle Picking Calibration
      • Tutorial: Blob Picker Tuner
      • Tutorial: Helical Processing using EMPIAR-10031 (MAVS)
      • Tutorial: Maximum Box Sizes for Refinement
      • Tutorial: CTF Refinement
      • Tutorial: Ewald Sphere Correction
      • Tutorial: Symmetry Relaxation
      • Tutorial: Orientation Diagnostics
      • Tutorial: BILD files in CryoSPARC v4.4+
      • Tutorial: Mask Creation
      • Case Study: Yeast U4/U6.U5 tri-snRNP
      • Tutorial: 3D Classification
      • Tutorial: 3D Variability Analysis (Part One)
      • Tutorial: 3D Variability Analysis (Part Two)
      • Tutorial: 3D Flexible Refinement
        • Installing 3DFlex Dependencies (v4.1–v4.3)
      • Tutorial: 3D Flex Mesh Preparation
    • Webinar Recordings
  • Real-time processing in cryoSPARC Live
    • About CryoSPARC Live
    • Prerequisites and Compute Resources Setup
    • How to Access cryoSPARC Live
    • UI Overview
    • New Live Session: Start to Finish Guide
    • CryoSPARC Live Tutorial Videos
    • Live Jobs and Session-Level Functions
    • Performance Metrics
    • Managing a CryoSPARC Live Session from the CLI
    • FAQs and Troubleshooting
  • Guides for v3
    • v3 User Interface Guide
      • Dashboard
      • Project and Workspace Management
      • Create and Build Jobs
      • Queue Job, Inspect Job and Other Job Actions
      • View and Download Results
      • Job Relationships
      • Resource Manager
      • User Management
    • Tutorial: Job Builder
    • Get Started with CryoSPARC: Introductory Tutorial (v3)
    • Tutorial: Manually Curate Exposures (v3)
  • Resources
    • Questions and Support
Powered by GitBook
On this page
  • CryoSPARC Live Performance Metrics
  • Hardware Configurations Used for Benchmarking
  • K2 MRC (HA Trimer)
  • Data Properties
  • Benchmarks
  • K2 TIFF (Nav1.7)
  • Data Properties
  • Benchmarks
  • K2 super-res TIFF (T20S)
  • Data Properties
  • Benchmarks
  • K3 TIFF (TT-OAD2)
  • Data Properties
  • Benchmarks
  • K3 super-res TIFF (TT-OAD2)
  • Data Properties
  • Benchmarks
  • Falcon III TIFF (PAC1)
  • Data Properties
  • Benchmarks
  • Falcon IV EER (Apoferritin)
  • Data Properties
  • Benchmarks
  • K2 TIFF with Preprocessing + 2D/3D Streaming (CB1 Gi)
  • Data Properties
  • Benchmarks
  1. Real-time processing in cryoSPARC Live

Performance Metrics

PreviousLive Jobs and Session-Level FunctionsNextManaging a CryoSPARC Live Session from the CLI

Last updated 4 years ago

CryoSPARC Live Performance Metrics

CryoSPARC Live is built and tuned for high performance pre-processing and streaming reconstruction of single particle data, and can use multiple concurrent GPUs for to maximize throughput.

CryoSPARC Live preprocessing includes four steps: (1) motion correction, (2) CTF estimation, (3) particle picking and (4) extraction.

CryoSPARC Live can sustain a throughput of 450 or more exposures per hour, per GPU, for K3 data. On a 4-GPU machine, that can scale to 1800+ exposures per hour! For K2 or Falcon data, performance can be even higher, upwards of 650 exposures per hour per GPU.

Depending on your hardware configuration (particularly raw data storage disk access speed), each preprocessing worker can sustain a throughput of at least one movie every 30 seconds, which is equal to ~2,500 movies per day per GPU.

In our internal tests, we have seen performance on well-tuned systems (like the testing hardware below) reaching up to 8,000 movies per GPU per day. See the to see details on what hardware was used to run the benchmarks.

All 3D renderings were captured in ChimeraX from maps created by cryoSPARC Live.

Hardware Configurations Used for Benchmarking

All pre-processing timings were measured with Configuration 1, unless otherwise noted.

Component

Configuration 1

Configuration 2

Configuration 3

CPU

AMD Ryzen Threadripper 2950x

AMD Ryzen Threadripper 3960x

AMD Ryzen Threadripper 3960x

Memory Bandwidth

128 GB/s

144GB/s

144GB/s

RAM

128GB DDR4 2666MHz

256GB DDR4 2933MHz

256GB DDR4 2933MHz

GPU 0

Quadro GV100

Quadro RTX 8000

GeForce RTX 3090

GPU 1

Quadro GV100

Quadro RTX 8000

GeForce RTX 3090

GPU 2

Quadro RTX 5000

GTX 1080Ti

-

GPU 3

GTX 1080Ti

Tesla K40c

-

Fast CPU memory bandwidth is a major contributing factor to high performance in cryoSPARC Live. Please make note of this metric when selecting your system's CPU and RAM.

K2 MRC (HA Trimer)

Benchmark results for 668 MRC-format uncompressed movies from a GATAN K2 4k × 4k detector. The first 40 of 100 frames were used.

Exposures from this dataset were captured with the stage tilted 40º.

Particles were selected with the Template Picker strategy. Streaming 2D Classification, Ab-initio Reconstruction and Streaming Refinement yielded 3.0Å resolution map from ~230,000 particles.

Data Properties

Property

Value

Detector

Gatan K2

Number of Movies

668

File Format

MRC

Frame Size

3838 x 3710

Frames per Movie

100 (40 used)

Pixel Size

1.13Å

Particle Extraction Box Size

144 × 144

Benchmarks

Metric

Value

Movies Pre-processed Per Hour Per GPU

430

Movies Pre-processed Per Day Per GPU

10290

Average Pre-processing Time Per Movie

8.4s

K2 TIFF (Nav1.7)

Benchmark results for ~24,000 TIFF-LZW compressed movies from a GATAN K2 4k × 4k detector.

Particles were selected with the Blob Picker strategy. Streaming 2D Classification, Ab-initio Reconstruction and Streaming Refinement yielded 3.3Å resolution map from ~300,000 particles.

Data Properties

Property

Value

Detector

Gatan K2 Summit

Number of Movies

25084

File Format

TIF-LZW

Frame Size

3838 × 3710

Frames per Movie

40

Pixel Size

0.85Å

Particle Extraction Box Size

512 × 512

Particle Extraction Bin Size

256 x 256

Applied Symmetry

C2

Benchmarks

Metric

Value

Movies Pre-processed Per Hour Per GPU

650

Movies Pre-processed Per Day Per GPU

15600

Average Pre-processing Time Per Movie

5.5s

K2 super-res TIFF (T20S)

Benchmark results for ~200 TIFF-LZW compressed movies from a GATAN K2 detector with super-resolution capture.

Particles were selected with the Template Picker strategy. Streaming 2D Classification, Ab-initio Reconstruction and Streaming Refinement yielded a 2.5Å resolution map from ~130,000 particles.

The target T20S Proteasome has D7 symmetry.

Data Properties

Property

Value

Detector

Gatan K2 (super-res)

Number of Movies

196

File Format

TIFF-LZW

Frame Size

7420 × 7676

Frames per Movie

38

Pixel Size

0.6575Å

Particle Extraction Box Size

448 × 448

Applied Symmetry

D7

Benchmarks

Metric

Value

Movies Pre-processed Per Hour Per GPU

254

Movies Pre-processed Per Day Per GPU

6096

Average Pre-processing Time Per Movie

14.2s

K3 TIFF (TT-OAD2)

Benchmark results for ~200 TIFF-LZW compressed movies from a GATAN K3 detector. The first 40 of 64 frames were used.

Particles were selected with the Blob Picker strategy. Post-processing (2D Classification, Refinement, etc.) was not run on this dataset.

Exposures in this dataset were captured with beam-induced tilt.

Data Properties

Property

Value

Detector

Gatan K3

Number of Movies

3159

File Format

TIFF-LZW

Frame Size

5760 × 4092

Frames per Movie

62 (40 used)

Pixel Size

0.826Å

Particle Extraction Box Size

144 × 144

Benchmarks

Metric

Value

Movies Pre-processed Per Hour Per GPU

420

Movies Pre-processed Per Day

10050

Average Pre-processing Time Per Movie

8.6s

K3 super-res TIFF (TT-OAD2)

Data Properties

Property

Value

Detector

Gatan K3 (super-res)

Number of Movies

4259

File Format

TIFF-LZW

Frame Size

11520 × 8184

Frames per Movie

67 (40 used)

Pixel Size

0.413Å

Particle Extraction Box Size

288 × 288

Benchmarks

Metric

Value

Movies Pre-processed Per Hour Per GPU

192

Movies Pre-processed Per Day Per GPU

4608

Average Pre-processing Time Per Movie

18.7s

Falcon III TIFF (PAC1)

Benchmark results for ~3000 TIFF-LZW compressed movies from a Falcon III detector.

Particles were selected with the Blob Picker strategy. Post-processing (2D Classification, Refinement, etc.) was not run on this dataset.

Data Properties

Property

Value

Detector

TFS Falcon III

Number of Movies

2895

File Format

TIFF-LZW

Frame Size

4096 × 4096

Frames per Movie

64

Pixel Size

0.835Å

Particle Extraction Box Size

420 × 420

Benchmarks

Metric

Value

Movies Pre-processed Per Hour Per GPU

493

Movies Pre-processed Per Day Per GPU

11832

Average Pre-processing Time Per Movie

7.3s

Falcon IV EER (Apoferritin)

Benchmark results for ~3000 Electron Event Representation (EER) movies from a Falcon IV detector. The particle is highly symmetric. The target apoferritin is highly symmetric. Enough information is present in the dataset to approach atomic resolution.

Particles were selected with the ring template picker strategy. Streaming 2D Classification, Ab-initio Reconstruction and Streaming Refinement yielded a 1.9Å resolution map from ~700,000 particles without any additional processing.

Data Properties

Property

Value

Detector

TFS Falcon IV

Number of Movies

3370

File Format

EER

Frame Size

8192 × 8192

Frames per Movie

434 (40 used)

Pixel Size

0.457Å

Particle Extraction Box Size

512 × 512

Benchmarks

Metric

Value

Movies Pre-processed Per Hour Per GPU

303

Movies Pre-processed Per Day Per GPU

7272

Average Pre-processing Time Per Movie

11.9s

K2 TIFF with Preprocessing + 2D/3D Streaming (CB1 Gi)

Benchmark results for ~3000 TIFF-LZW compressed movies from a GATAN K2 detector. The target complex is a small, flexible membrane protein.

Particles were selected with the Template Picker strategy. Streaming 2D Classification, Ab-initio Reconstruction and Streaming Refinement yielded a 3.9Å resolution map from ~700,000 particles.

Data Properties

Property

Value

Detector

Gatan K2

Number of Movies

2756

File Format

TIFF-LZW

Frame Size

3838 × 3710

Frames per Movie

40

Pixel Size

0.86Å

Particle Extraction Box Size

360 × 360

Particle Extraction Bin Size

256 × 256

Benchmarks

Metric

Value

Movies Pre-processed Per Hour Per GPU

870

Movies Pre-processed Per Day Per GPU

20880

Average Pre-processing Time Per Movie

4.13s

Post-Processing: 256 × 256 box size, 50 2D Classes

Metric

Value

Particles Extracted for 2D Classification

79,278

Time to 2D Classify Extracted Particles

4 minutes, 16 seconds

Particles Used for Reconstruction

100,000

Time to Reconstruct Initial Volume (Ab-initio)

5 minutes, 11 seconds

Particles Selected for Refinement

278,312

Time to Refine Final Volume

22 minutes, 55 seconds

Benchmark results using super-resolution variants from super-resolution variant of . Only the first 40 frames of each exposure were used.

Pre-processing and streaming results for this dataset measured with

Hardware Configurations used for Benchmarking section
previous dataset
Hardware Configuration 3
LogoEMPIAR-10097 40 Degree Tilted Single-Particle CryoEM of Highly Preferred Orientated Influenza Hemagglutinin Trimer
Dataset on EMPIAR
LogoEMPIAR-10261 CryoEM micrographs of ProTx2-bound Nav1.7 VSD2-NavAb chimeric channel
Dataset on EMPIAR
LogoEMPIAR-10025 T20S Proteasome at 2.8 Å Resolution
Dataset on EMPIAR
LogoEMPIAR-10346 Cryo-EM of GLP-1 receptor bound to TT-OAD2 non-peptidic agonist
Dataset on EMPIAR
LogoEMPIAR-10351 Cryo-EM structure of the human PAC1 receptor coupled to an engineered heterotrimeric G protein
LogoEMPIAR-10424 Atomic resolution structure of apoferritin
Dataset on EMPIAR
Dataset on EMPIAR
LogoEMPIAR-10288 Cryo electron microscopy of Cannabinoid Receptor 1-G Protein Complex