CryoSPARC Guide
  • About CryoSPARC
  • Current Version
  • Licensing
    • Non-commercial license agreement
  • Setup, Configuration and Management
    • CryoSPARC Architecture and System Requirements
    • CryoSPARC Installation Prerequisites
    • How to Download, Install and Configure
      • Obtaining A License ID
      • Downloading and Installing CryoSPARC
      • CryoSPARC Cluster Integration Script Examples
      • Accessing the CryoSPARC User Interface
    • Deploying CryoSPARC on AWS
      • Performance Benchmarks
    • Using CryoSPARC with Cluster Management Software
    • Software Updates and Patches
    • Management and Monitoring
      • Environment variables
      • (Optional) Hosting CryoSPARC Through a Reverse Proxy
      • cryosparcm reference
      • cryosparcm cli reference
      • cryosparcw reference
    • Software System Guides
      • Guide: Updating to CryoSPARC v4
      • Guide: Installation Testing with cryosparcm test
      • Guide: Verify CryoSPARC Installation with the Extensive Validation Job (v4.3+)
      • Guide: Verify CryoSPARC Installation with the Extensive Workflow (≤v4.2)
      • Guide: Performance Benchmarking (v4.3+)
      • Guide: Download Error Reports
      • Guide: Maintenance Mode and Configurable User Facing Messages
      • Guide: User Management
      • Guide: Multi-user Unix Permissions and Data Access Control
      • Guide: Lane Assignments and Restrictions
      • Guide: Queuing Directly to a GPU
      • Guide: Priority Job Queuing
      • Guide: Configuring Custom Variables for Cluster Job Submission Scripts
      • Guide: SSD Particle Caching in CryoSPARC
      • Guide: Data Management in CryoSPARC (v4.0+)
      • Guide: Data Cleanup (v4.3+)
      • Guide: Reduce Database Size (v4.3+)
      • Guide: Data Management in CryoSPARC (≤v3.3)
      • Guide: CryoSPARC Live Session Data Management
      • Guide: Manipulating .cs Files Created By CryoSPARC
      • Guide: Migrating your CryoSPARC Instance
      • Guide: EMDB-friendly XML file for FSC plots
    • Troubleshooting
  • Application Guide (v4.0+)
    • A Tour of the CryoSPARC Interface
    • Browsing the CryoSPARC Instance
    • Projects, Workspaces and Live Sessions
    • Jobs
    • Job Views: Cards, Tree, and Table
    • Creating and Running Jobs
    • Low Level Results Interface
    • Filters and Sorting
    • View Options
    • Tags
    • Flat vs Hierarchical Navigation
    • File Browser
    • Blueprints
    • Workflows
    • Inspecting Data
    • Managing Jobs
    • Interactive Jobs
    • Upload Local Files
    • Managing Data
    • Downloading and Exporting Data
    • Instance Management
    • Admin Panel
  • Cryo-EM Foundations
    • Image Formation
      • Contrast in Cryo-EM
      • Waves as Vectors
      • Aliasing
  • Expectation Maximization in Cryo-EM
  • Processing Data in cryoSPARC
    • Get Started with CryoSPARC: Introductory Tutorial (v4.0+)
    • Tutorial Videos
    • All Job Types in CryoSPARC
      • Import
        • Job: Import Movies
        • Job: Import Micrographs
        • Job: Import Particle Stack
        • Job: Import 3D Volumes
        • Job: Import Templates
        • Job: Import Result Group
        • Job: Import Beam Shift
      • Motion Correction
        • Job: Patch Motion Correction
        • Job: Full-Frame Motion Correction
        • Job: Local Motion Correction
        • Job: MotionCor2 (Wrapper) (BETA)
        • Job: Reference Based Motion Correction (BETA)
      • CTF Estimation
        • Job: Patch CTF Estimation
        • Job: Patch CTF Extraction
        • Job: CTFFIND4 (Wrapper)
        • Job: Gctf (Wrapper) (Legacy)
      • Exposure Curation
        • Job: Micrograph Denoiser (BETA)
        • Job: Micrograph Junk Detector (BETA)
        • Interactive Job: Manually Curate Exposures
      • Particle Picking
        • Interactive Job: Manual Picker
        • Job: Blob Picker
        • Job: Template Picker
        • Job: Filament Tracer
        • Job: Blob Picker Tuner
        • Interactive Job: Inspect Particle Picks
        • Job: Create Templates
      • Extraction
        • Job: Extract from Micrographs
        • Job: Downsample Particles
        • Job: Restack Particles
      • Deep Picking
        • Guideline for Supervised Particle Picking using Deep Learning Models
        • Deep Network Particle Picker
          • T20S Proteasome: Deep Particle Picking Tutorial
          • Job: Deep Picker Train and Job: Deep Picker Inference
        • Topaz (Bepler, et al)
          • T20S Proteasome: Topaz Particle Picking Tutorial
          • T20S Proteasome: Topaz Micrograph Denoising Tutorial
          • Job: Topaz Train and Job: Topaz Cross Validation
          • Job: Topaz Extract
          • Job: Topaz Denoise
      • Particle Curation
        • Job: 2D Classification
        • Interactive Job: Select 2D Classes
        • Job: Reference Based Auto Select 2D (BETA)
        • Job: Reconstruct 2D Classes
        • Job: Rebalance 2D Classes
        • Job: Class Probability Filter (Legacy)
        • Job: Rebalance Orientations
        • Job: Subset Particles by Statistic
      • 3D Reconstruction
        • Job: Ab-Initio Reconstruction
      • 3D Refinement
        • Job: Homogeneous Refinement
        • Job: Heterogeneous Refinement
        • Job: Non-Uniform Refinement
        • Job: Homogeneous Reconstruction Only
        • Job: Heterogeneous Reconstruction Only
        • Job: Homogeneous Refinement (Legacy)
        • Job: Non-uniform Refinement (Legacy)
      • CTF Refinement
        • Job: Global CTF Refinement
        • Job: Local CTF Refinement
        • Job: Exposure Group Utilities
      • Conformational Variability
        • Job: 3D Variability
        • Job: 3D Variability Display
        • Job: 3D Classification
        • Job: Regroup 3D Classes
        • Job: Reference Based Auto Select 3D (BETA)
        • Job: 3D Flexible Refinement (3DFlex) (BETA)
      • Postprocessing
        • Job: Sharpening Tools
        • Job: DeepEMhancer (Wrapper)
        • Job: Validation (FSC)
        • Job: Local Resolution Estimation
        • Job: Local Filtering
        • Job: ResLog Analysis
        • Job: ThreeDFSC (Wrapper) (Legacy)
      • Local Refinement
        • Job: Local Refinement
        • Job: Particle Subtraction
        • Job: Local Refinement (Legacy)
      • Helical Reconstruction
        • Helical symmetry in CryoSPARC
        • Job: Helical Refinement
        • Job: Symmetry search utility
        • Job: Average Power Spectra
      • Utilities
        • Job: Exposure Sets Tool
        • Job: Exposure Tools
        • Job: Generate Micrograph Thumbnails
        • Job: Cache Particles on SSD
        • Job: Check for Corrupt Particles
        • Job: Particle Sets Tool
        • Job: Reassign Particles to Micrographs
        • Job: Remove Duplicate Particles
        • Job: Symmetry Expansion
        • Job: Volume Tools
        • Job: Volume Alignment Tools
        • Job: Align 3D maps
        • Job: Split Volumes Group
        • Job: Orientation Diagnostics
      • Simulations
        • Job: Simulate Data (GPU)
        • Job: Simulate Data (Legacy)
    • CryoSPARC Tools
    • Data Processing Tutorials
      • Case study: End-to-end processing of a ligand-bound GPCR (EMPIAR-10853)
      • Case Study: DkTx-bound TRPV1 (EMPIAR-10059)
      • Case Study: Pseudosymmetry in TRPV5 and Calmodulin (EMPIAR-10256)
      • Case Study: End-to-end processing of an inactive GPCR (EMPIAR-10668)
      • Case Study: End-to-end processing of encapsulated ferritin (EMPIAR-10716)
      • Case Study: Exploratory data processing by Oliver Clarke
      • Tutorial: Tips for Membrane Protein Structures
      • Tutorial: Common CryoSPARC Plots
      • Tutorial: Negative Stain Data
      • Tutorial: Phase Plate Data
      • Tutorial: EER File Support
      • Tutorial: EPU AFIS Beam Shift Import
      • Tutorial: Patch Motion and Patch CTF
      • Tutorial: Float16 Support
      • Tutorial: Particle Picking Calibration
      • Tutorial: Blob Picker Tuner
      • Tutorial: Helical Processing using EMPIAR-10031 (MAVS)
      • Tutorial: Maximum Box Sizes for Refinement
      • Tutorial: CTF Refinement
      • Tutorial: Ewald Sphere Correction
      • Tutorial: Symmetry Relaxation
      • Tutorial: Orientation Diagnostics
      • Tutorial: BILD files in CryoSPARC v4.4+
      • Tutorial: Mask Creation
      • Case Study: Yeast U4/U6.U5 tri-snRNP
      • Tutorial: 3D Classification
      • Tutorial: 3D Variability Analysis (Part One)
      • Tutorial: 3D Variability Analysis (Part Two)
      • Tutorial: 3D Flexible Refinement
        • Installing 3DFlex Dependencies (v4.1–v4.3)
      • Tutorial: 3D Flex Mesh Preparation
    • Webinar Recordings
  • Real-time processing in cryoSPARC Live
    • About CryoSPARC Live
    • Prerequisites and Compute Resources Setup
    • How to Access cryoSPARC Live
    • UI Overview
    • New Live Session: Start to Finish Guide
    • CryoSPARC Live Tutorial Videos
    • Live Jobs and Session-Level Functions
    • Performance Metrics
    • Managing a CryoSPARC Live Session from the CLI
    • FAQs and Troubleshooting
  • Guides for v3
    • v3 User Interface Guide
      • Dashboard
      • Project and Workspace Management
      • Create and Build Jobs
      • Queue Job, Inspect Job and Other Job Actions
      • View and Download Results
      • Job Relationships
      • Resource Manager
      • User Management
    • Tutorial: Job Builder
    • Get Started with CryoSPARC: Introductory Tutorial (v3)
    • Tutorial: Manually Curate Exposures (v3)
  • Resources
    • Questions and Support
Powered by GitBook
On this page
  • At a Glance
  • Description
  • Split Volumes Group Job
  • Volumes groups
  • When to use Split Volumes Groups
  • Inputs
  • All particles
  • All volumes
  • Commonly Adjusted Parameters
  • Static number of output volumes
  • Outputs
  • Particles class X
  • Volume class X
  • Downloading a volumes group: series
  1. Processing Data in cryoSPARC
  2. All Job Types in CryoSPARC
  3. Utilities

Job: Split Volumes Group

PreviousJob: Align 3D mapsNextJob: Orientation Diagnostics

Last updated 11 months ago

At a Glance

Split a volumes group into several individual volume outputs, optionally splitting particles as well.

Description

Split Volumes Group Job

The Split Volumes Group job type allows for converting a volumes group into a number of individual volume outputs. This is useful if specific volumes from within a volumes group need to be manually selected or connected to downstream jobs. A set of particles corresponding to the volumes group can also be connected as input to the job, and those particles will be split according to their classification amongst the volumes in the group.

Volumes groups

Volumes groups are new in CryoSPARC v4.5+.

In CryoSPARC, jobs such as Ab-Initio Reconstruction, Heterogeneous Refinement, 3D Classification, Regroup 3D Classes, Heterogeneous Reconstruct Only, Orientation Diagnostics and Align 3D Maps, all produce one or more volume outputs. Where multiple volumes are produced, each is output separately, e.g. Volume class 0, Volume class 1, etc.

In v4.5+, the above job types also produce a Volumes group output, denoted by the type volume_multi, which contains multiple volumes in a single output. Some jobs in v4.5+ also take volumes groups as input.

Unlike an individual volume output, a volumes group can contain an arbitrary number of volumes unknown at the job’s build time, can include multiple versions of each volume such as map and map_sharp, and can also contain metadata information about each of those volumes such as resolution info.

For jobs that produces many volumes in a volumes group, all the volumes can be connected to a downstream job with a single connection of the volumes group, rather than many individual drag-and-drop actions to connect each individual volume. Volumes group connections can also be used when setting up .

Note that a volumes group (volume_multi type) is not the same as an individual 3D volume output (volume type). These two types cannot be interchanged, and jobs requiring volume_multi as input can not take in volume inputs. Jobs run in CryoSPARC versions prior to v4.5 do not produce volumes group outputs and therefore cannot be connected to jobs that require volumes group inputs in v4.5+.

volume_multi outputs have a new output field, alignments3D_multi. We do not expect users will need to interact with this field in typical CryoSPARC usage, but some external software (such as pyem) may need to be updated to handle the new data format.

When to use Split Volumes Groups

Split Volumes Groups can be used with any job that produces a volumes group in order to separate the volumes from the group into individual volume outputs, as well as associated particle outputs if a particle stack is provided. For example:

  • After Reference Based Auto Select 3D, use Split Volumes Groups to split apart the Volumes selected output into individual volumes, so that a particular volume can be used for refinement.

  • After 3D Variability Display, use Split Volumes Groups to split apart one of the Volume series outputs in order to use a few volumes from different positions along the 3D variability components as input volumes for Heterogeneous Refinement or 3D Classification.

Inputs

All particles

This is an optional input. If provided, particles require 3D alignments corresponding to the volumes group to be split, and so should come from the same job that produced the volumes group connected to the All volumes input.

All volumes

The volumes group to be split. This group can contain an arbitrary number of volumes. If the group contains multiple versions of each volume (e.g., map , map_sharp, etc.), then all versions of each volume will be output in each of the individual volume outputs.

Commonly Adjusted Parameters

Static number of output volumes

This is an optional parameter. Fix the number of single volume outputs this job will produce, regardless of how many volumes are in the input group. When this parameter is set to N, the first N volumes from the input volumes group will be produced as individual output volumes.

This parameter is necessary for using the Split Volumes Group job in Workflows, so that volume outputs from this job are available for making connections downstream before this job is actually run. If there are more volumes present in the input group than this parameter, the extras will not be output; if there are fewer volumes present, the job will contain some unpopulated outputs. When not set, the job will dynamically produce volume outputs at run time.

Outputs

Particles class X

This output is only produced if particles were connected to the All particles input.

Subset of input particles that correspond to class X.

Volume class X

An individual volume output containing all versions of the volume for class X.

Downloading a volumes group: series

Note that some jobs that output volumes groups also provide a series result as part of the volumes group. The series (or series_sharp, etc.) results serve as a convenient way to download a zip file containing all of the volumes in the group, for visualization:

Workflows