blob
and ctf
required)Number of 2D Classes:
In a typical dataset comprising hundreds of thousands of particles, the Number of 2D Classes is typically set between 50 and 200, or even as high as 300 classes. In general, as the Number of 2D Classes increases, the likelihood of finding "junk" classes also increases because "good" classes will become visually more obvious. With too few classes, "junk" particles may be hidden within what otherwise looks like a "good" class.Initial classification uncertainty factor:
The Initial Classification Uncertainty Factor (ICUF) tries to capture the user's knowledge of the similarity in quality of particles within a dataset. When the ICUF is set to a value of 1, this reflects that "junk" particles look very different from good particles within the same dataset. On the other hand, a larger ICUF means that the "junk" may look very similar to good particles, and therefore the algorithm should at first be more uncertain about assigning particles to classes. Modifying this parameter instructs the optimization algorithm to search for 2D classes that are more similar (ICUF large) or less similar (ICUF small) to each other.Maximum alignment res (A)
: This is the highest resolution used to align particles to classes. By default, this is the same as the maximum reconstruction resolution, however this can be set to a higher value (lower resolution) which may help with overfitting, along with disabling theForce Max over poses/shifts
parameter.Circular mask diameter (A)
: This controls the diameter of the circular mask applied to the 2D classes at each iteration. For crowded particles, setting the circular mask diameter to a value slightly greater than the maximum particle diameter helps prevent the algorithm from converging to classes with two particles in them. This should generally be used in combination with the Re-center 2D classes
parameter.Force Max over poses/shifts
: This controls whether during reconstruction, the algorithm will only use the maximum posterior pose, or will marginalize over poses. By default this is true
, meaning maximization is used, but this can be set to false
to help achieve better 2D classes especially for very small molecules. Note: When the Number of 2D Classes
is set to 20 or fewer, Force Max over poses/shifts
will turn off by default.Align filament classes vertically
: For picks of filament-like particles, this can be set to align all class averages vertically in the final iteration, enabling estimation of in-plane rotation. Note that this is approximate, and will not attempt to estimate the relative polarity of class averages.Number of online-EM iterations
: By default, 20 iterations of Expectation-Maximization are done, but this can be increased for particularly small particles or low SNR particles.Batchsize per class
: This controls the number of particles that are used for each iteration of Expectation-Maximization, per class. This can also be increased for particularly small or low SNR particles.2D Zeropad Factor
: This is the factor by which the classes are padded to in Fourier space. By default, classes are padded to twice their box size in Fourier space, but for particles that already have a large box size, this can be set to a minimum of 1 to reduce GPU memory requirements.Min over scale after first iteration
: This enables estimation of per-particle scale factors during Expectation-Maximization. This can help if ice thicknesses varied greatly during data collection.Use clamp-solvent to solve 2D classes
to true
.Enforce non-negativity
parameter to true
.Batchsize per class
parameter, which increases the number of images seen during each EM iteration.Number of online-EM iterations
parameter.Force max over poses/shifts
parameter, which enables marginalization and may help with overfitting.