CryoSPARC Guide
  • About CryoSPARC
  • Current Version
  • Licensing
    • Non-commercial license agreement
  • Setup, Configuration and Management
    • CryoSPARC Architecture and System Requirements
    • CryoSPARC Installation Prerequisites
    • How to Download, Install and Configure
      • Obtaining A License ID
      • Downloading and Installing CryoSPARC
      • CryoSPARC Cluster Integration Script Examples
      • Accessing the CryoSPARC User Interface
    • Deploying CryoSPARC on AWS
      • Performance Benchmarks
    • Using CryoSPARC with Cluster Management Software
    • Software Updates and Patches
    • Management and Monitoring
      • Environment variables
      • (Optional) Hosting CryoSPARC Through a Reverse Proxy
      • cryosparcm reference
      • cryosparcm cli reference
      • cryosparcw reference
    • Software System Guides
      • Guide: Updating to CryoSPARC v4
      • Guide: Installation Testing with cryosparcm test
      • Guide: Verify CryoSPARC Installation with the Extensive Validation Job (v4.3+)
      • Guide: Verify CryoSPARC Installation with the Extensive Workflow (≤v4.2)
      • Guide: Performance Benchmarking (v4.3+)
      • Guide: Download Error Reports
      • Guide: Maintenance Mode and Configurable User Facing Messages
      • Guide: User Management
      • Guide: Multi-user Unix Permissions and Data Access Control
      • Guide: Lane Assignments and Restrictions
      • Guide: Queuing Directly to a GPU
      • Guide: Priority Job Queuing
      • Guide: Configuring Custom Variables for Cluster Job Submission Scripts
      • Guide: SSD Particle Caching in CryoSPARC
      • Guide: Data Management in CryoSPARC (v4.0+)
      • Guide: Data Cleanup (v4.3+)
      • Guide: Reduce Database Size (v4.3+)
      • Guide: Data Management in CryoSPARC (≤v3.3)
      • Guide: CryoSPARC Live Session Data Management
      • Guide: Manipulating .cs Files Created By CryoSPARC
      • Guide: Migrating your CryoSPARC Instance
      • Guide: EMDB-friendly XML file for FSC plots
    • Troubleshooting
  • Application Guide (v4.0+)
    • A Tour of the CryoSPARC Interface
    • Browsing the CryoSPARC Instance
    • Projects, Workspaces and Live Sessions
    • Jobs
    • Job Views: Cards, Tree, and Table
    • Creating and Running Jobs
    • Low Level Results Interface
    • Filters and Sorting
    • View Options
    • Tags
    • Flat vs Hierarchical Navigation
    • File Browser
    • Blueprints
    • Workflows
    • Inspecting Data
    • Managing Jobs
    • Interactive Jobs
    • Upload Local Files
    • Managing Data
    • Downloading and Exporting Data
    • Instance Management
    • Admin Panel
  • Cryo-EM Foundations
    • Image Formation
      • Contrast in Cryo-EM
      • Waves as Vectors
      • Aliasing
  • Expectation Maximization in Cryo-EM
  • Processing Data in cryoSPARC
    • Get Started with CryoSPARC: Introductory Tutorial (v4.0+)
    • Tutorial Videos
    • All Job Types in CryoSPARC
      • Import
        • Job: Import Movies
        • Job: Import Micrographs
        • Job: Import Particle Stack
        • Job: Import 3D Volumes
        • Job: Import Templates
        • Job: Import Result Group
        • Job: Import Beam Shift
      • Motion Correction
        • Job: Patch Motion Correction
        • Job: Full-Frame Motion Correction
        • Job: Local Motion Correction
        • Job: MotionCor2 (Wrapper) (BETA)
        • Job: Reference Based Motion Correction (BETA)
      • CTF Estimation
        • Job: Patch CTF Estimation
        • Job: Patch CTF Extraction
        • Job: CTFFIND4 (Wrapper)
        • Job: Gctf (Wrapper) (Legacy)
      • Exposure Curation
        • Job: Micrograph Denoiser (BETA)
        • Job: Micrograph Junk Detector (BETA)
        • Interactive Job: Manually Curate Exposures
      • Particle Picking
        • Interactive Job: Manual Picker
        • Job: Blob Picker
        • Job: Template Picker
        • Job: Filament Tracer
        • Job: Blob Picker Tuner
        • Interactive Job: Inspect Particle Picks
        • Job: Create Templates
      • Extraction
        • Job: Extract from Micrographs
        • Job: Downsample Particles
        • Job: Restack Particles
      • Deep Picking
        • Guideline for Supervised Particle Picking using Deep Learning Models
        • Deep Network Particle Picker
          • T20S Proteasome: Deep Particle Picking Tutorial
          • Job: Deep Picker Train and Job: Deep Picker Inference
        • Topaz (Bepler, et al)
          • T20S Proteasome: Topaz Particle Picking Tutorial
          • T20S Proteasome: Topaz Micrograph Denoising Tutorial
          • Job: Topaz Train and Job: Topaz Cross Validation
          • Job: Topaz Extract
          • Job: Topaz Denoise
      • Particle Curation
        • Job: 2D Classification
        • Interactive Job: Select 2D Classes
        • Job: Reference Based Auto Select 2D (BETA)
        • Job: Reconstruct 2D Classes
        • Job: Rebalance 2D Classes
        • Job: Class Probability Filter (Legacy)
        • Job: Rebalance Orientations
        • Job: Subset Particles by Statistic
      • 3D Reconstruction
        • Job: Ab-Initio Reconstruction
      • 3D Refinement
        • Job: Homogeneous Refinement
        • Job: Heterogeneous Refinement
        • Job: Non-Uniform Refinement
        • Job: Homogeneous Reconstruction Only
        • Job: Heterogeneous Reconstruction Only
        • Job: Homogeneous Refinement (Legacy)
        • Job: Non-uniform Refinement (Legacy)
      • CTF Refinement
        • Job: Global CTF Refinement
        • Job: Local CTF Refinement
        • Job: Exposure Group Utilities
      • Conformational Variability
        • Job: 3D Variability
        • Job: 3D Variability Display
        • Job: 3D Classification
        • Job: Regroup 3D Classes
        • Job: Reference Based Auto Select 3D (BETA)
        • Job: 3D Flexible Refinement (3DFlex) (BETA)
      • Postprocessing
        • Job: Sharpening Tools
        • Job: DeepEMhancer (Wrapper)
        • Job: Validation (FSC)
        • Job: Local Resolution Estimation
        • Job: Local Filtering
        • Job: ResLog Analysis
        • Job: ThreeDFSC (Wrapper) (Legacy)
      • Local Refinement
        • Job: Local Refinement
        • Job: Particle Subtraction
        • Job: Local Refinement (Legacy)
      • Helical Reconstruction
        • Helical symmetry in CryoSPARC
        • Job: Helical Refinement
        • Job: Symmetry search utility
        • Job: Average Power Spectra
      • Utilities
        • Job: Exposure Sets Tool
        • Job: Exposure Tools
        • Job: Generate Micrograph Thumbnails
        • Job: Cache Particles on SSD
        • Job: Check for Corrupt Particles
        • Job: Particle Sets Tool
        • Job: Reassign Particles to Micrographs
        • Job: Remove Duplicate Particles
        • Job: Symmetry Expansion
        • Job: Volume Tools
        • Job: Volume Alignment Tools
        • Job: Align 3D maps
        • Job: Split Volumes Group
        • Job: Orientation Diagnostics
      • Simulations
        • Job: Simulate Data (GPU)
        • Job: Simulate Data (Legacy)
    • CryoSPARC Tools
    • Data Processing Tutorials
      • Case study: End-to-end processing of a ligand-bound GPCR (EMPIAR-10853)
      • Case Study: DkTx-bound TRPV1 (EMPIAR-10059)
      • Case Study: Pseudosymmetry in TRPV5 and Calmodulin (EMPIAR-10256)
      • Case Study: End-to-end processing of an inactive GPCR (EMPIAR-10668)
      • Case Study: End-to-end processing of encapsulated ferritin (EMPIAR-10716)
      • Case Study: Exploratory data processing by Oliver Clarke
      • Tutorial: Tips for Membrane Protein Structures
      • Tutorial: Common CryoSPARC Plots
      • Tutorial: Negative Stain Data
      • Tutorial: Phase Plate Data
      • Tutorial: EER File Support
      • Tutorial: EPU AFIS Beam Shift Import
      • Tutorial: Patch Motion and Patch CTF
      • Tutorial: Float16 Support
      • Tutorial: Particle Picking Calibration
      • Tutorial: Blob Picker Tuner
      • Tutorial: Helical Processing using EMPIAR-10031 (MAVS)
      • Tutorial: Maximum Box Sizes for Refinement
      • Tutorial: CTF Refinement
      • Tutorial: Ewald Sphere Correction
      • Tutorial: Symmetry Relaxation
      • Tutorial: Orientation Diagnostics
      • Tutorial: BILD files in CryoSPARC v4.4+
      • Tutorial: Mask Creation
      • Case Study: Yeast U4/U6.U5 tri-snRNP
      • Tutorial: 3D Classification
      • Tutorial: 3D Variability Analysis (Part One)
      • Tutorial: 3D Variability Analysis (Part Two)
      • Tutorial: 3D Flexible Refinement
        • Installing 3DFlex Dependencies (v4.1–v4.3)
      • Tutorial: 3D Flex Mesh Preparation
    • Webinar Recordings
  • Real-time processing in cryoSPARC Live
    • About CryoSPARC Live
    • Prerequisites and Compute Resources Setup
    • How to Access cryoSPARC Live
    • UI Overview
    • New Live Session: Start to Finish Guide
    • CryoSPARC Live Tutorial Videos
    • Live Jobs and Session-Level Functions
    • Performance Metrics
    • Managing a CryoSPARC Live Session from the CLI
    • FAQs and Troubleshooting
  • Guides for v3
    • v3 User Interface Guide
      • Dashboard
      • Project and Workspace Management
      • Create and Build Jobs
      • Queue Job, Inspect Job and Other Job Actions
      • View and Download Results
      • Job Relationships
      • Resource Manager
      • User Management
    • Tutorial: Job Builder
    • Get Started with CryoSPARC: Introductory Tutorial (v3)
    • Tutorial: Manually Curate Exposures (v3)
  • Resources
    • Questions and Support
Powered by GitBook
On this page
  • Webinar: Methods and tools for processing membrane protein cryo-EM data (CCeMMP Seminar Series)
  • Webinar: CryoSPARC Live: The advantages of on-the-fly processing in cryo-EM
  • Webinar: Real-time cryo-EM analysis for all: CryoSPARC Live
  • Webinar: Resolving flexibility and heterogeneity with 3D Variability Analysis
  • Webinar: CryoEM for Drug Discovery
  1. Processing Data in cryoSPARC

Webinar Recordings

CryoSPARC webinar recordings.

PreviousTutorial: 3D Flex Mesh PreparationNextAbout CryoSPARC Live

Last updated 9 months ago

Webinar: Methods and tools for processing membrane protein cryo-EM data (CCeMMP Seminar Series)

July 2024

Automation of single particle cryo-EM workflows can be very useful in a drug discovery context, especially when working on multiple structures within a similar class of targets. Using 8 publicly-available active state GPCR datasets, we walk through how to use new tools in CryoSPARC for one-click processing that in many cases can meet or exceed the resolution and map quality obtained from manual processing.

New tools covered include (v4.4+) for automating the entire workflow, (v4.5+) and Junk Detector (pre-trained micrograph segmentation tool, in development) for improved particle picking, for automated selection of good 2D classes, along with the use of decoy volumes for curation in 3D, and finally, and for selecting volumes and performing final refinements.

Webinar: CryoSPARC Live: The advantages of on-the-fly processing in cryo-EM

May 2024

Modern cryo-EM datasets are typically several terabytes in size and often take over a day to collect. With traditional batch-based processing, users must wait for all files to be available on their local machine before beginning to process them. Moreover, processing must be performed entirely in serial, forcing later steps to wait until earlier steps (like motion correction) have completed.

This talk covers the advantages of using CryoSPARC Live™, an on-the-fly processing system built in to CryoSPARC™. Movies are processed as they arrive, and later steps (like particle curation, 2D classification, and 3D refinement) can be performed in parallel with motion correction. This dramatically improves throughput, in some cases producing a high-quality 3D map even before all movies have been preprocessed.

A version of this talk was originally presented at the Pacific Northwest Center for CryoEM (PNCC) in May 2024.

Webinar: Real-time cryo-EM analysis for all: CryoSPARC Live

June 2021

Learn how CryoSPARC Live, a seamless real-time 2D and 3D processing system for single particle cryo-EM, accelerates time-to-structure and drives rapid insights into sample characteristics and data quality, enabling decision making while the sample is still in the microscope.

CryoSPARC Live is not just for facilities; it is also the fastest, simplest way for beginners and experts alike to process cryo-EM data that has already been collected. We cover use cases, performance considerations, real-time experimentation and practical workflows, and are joined by two expert guest speakers, Giovanna Scapin (NIS) and Craig Yoshioka (PNCC), who discuss how they use CryoSPARC Live in practice in both industry and academic settings.

Webinar: Resolving flexibility and heterogeneity with 3D Variability Analysis

June 2020

Learn how the new 3D Variability Analysis (3DVA) algorithm in CryoSPARC can reveal new functional and biological insight into the conformational and flexible motion dynamics of a protein molecule from single particle cryo-EM data.

We will cover the new concepts introduced by the algorithm, interpretation of results, several case studies and examples, practical considerations to keep in mind when working on your own data, and live audience Q&A. 3DVA has already been used in many notable structural studies to shed light on protein dynamics, including GPCR structures and the SARS-CoV-2 spike protein.

Webinar: CryoEM for Drug Discovery

May 2019

Educational webinar hosted by Structura Biotechnology Inc., Merck and NVIDIA on how cryo-EM offers value for drug discovery and structure-based drug design, on targets like GPCRs and membrane proteins. Covers: why is cryo-EM useful for drug discovery; computational aspects involved in cryo-EM structure determination; future advancements.

Workflows
Micrograph Denoiser
Reference Based Auto Select 2D
Reference Based Auto Select 3D
Align 3D maps
Logo3D variability analysis: Resolving continuous flexibility and discrete heterogeneity from single particle cryo-EM