CryoSPARC Guide
  • About CryoSPARC
  • Current Version
  • Licensing
    • Non-commercial license agreement
  • Setup, Configuration and Management
    • CryoSPARC Architecture and System Requirements
    • CryoSPARC Installation Prerequisites
    • How to Download, Install and Configure
      • Obtaining A License ID
      • Downloading and Installing CryoSPARC
      • CryoSPARC Cluster Integration Script Examples
      • Accessing the CryoSPARC User Interface
    • Deploying CryoSPARC on AWS
      • Performance Benchmarks
    • Using CryoSPARC with Cluster Management Software
    • Software Updates and Patches
    • Management and Monitoring
      • Environment variables
      • (Optional) Hosting CryoSPARC Through a Reverse Proxy
      • cryosparcm reference
      • cryosparcm cli reference
      • cryosparcw reference
    • Software System Guides
      • Guide: Updating to CryoSPARC v4
      • Guide: Installation Testing with cryosparcm test
      • Guide: Verify CryoSPARC Installation with the Extensive Validation Job (v4.3+)
      • Guide: Verify CryoSPARC Installation with the Extensive Workflow (≤v4.2)
      • Guide: Performance Benchmarking (v4.3+)
      • Guide: Download Error Reports
      • Guide: Maintenance Mode and Configurable User Facing Messages
      • Guide: User Management
      • Guide: Multi-user Unix Permissions and Data Access Control
      • Guide: Lane Assignments and Restrictions
      • Guide: Queuing Directly to a GPU
      • Guide: Priority Job Queuing
      • Guide: Configuring Custom Variables for Cluster Job Submission Scripts
      • Guide: SSD Particle Caching in CryoSPARC
      • Guide: Data Management in CryoSPARC (v4.0+)
      • Guide: Data Cleanup (v4.3+)
      • Guide: Reduce Database Size (v4.3+)
      • Guide: Data Management in CryoSPARC (≤v3.3)
      • Guide: CryoSPARC Live Session Data Management
      • Guide: Manipulating .cs Files Created By CryoSPARC
      • Guide: Migrating your CryoSPARC Instance
      • Guide: EMDB-friendly XML file for FSC plots
    • Troubleshooting
  • Application Guide (v4.0+)
    • A Tour of the CryoSPARC Interface
    • Browsing the CryoSPARC Instance
    • Projects, Workspaces and Live Sessions
    • Jobs
    • Job Views: Cards, Tree, and Table
    • Creating and Running Jobs
    • Low Level Results Interface
    • Filters and Sorting
    • View Options
    • Tags
    • Flat vs Hierarchical Navigation
    • File Browser
    • Blueprints
    • Workflows
    • Inspecting Data
    • Managing Jobs
    • Interactive Jobs
    • Upload Local Files
    • Managing Data
    • Downloading and Exporting Data
    • Instance Management
    • Admin Panel
  • Cryo-EM Foundations
    • Image Formation
      • Contrast in Cryo-EM
      • Waves as Vectors
      • Aliasing
  • Expectation Maximization in Cryo-EM
  • Processing Data in cryoSPARC
    • Get Started with CryoSPARC: Introductory Tutorial (v4.0+)
    • Tutorial Videos
    • All Job Types in CryoSPARC
      • Import
        • Job: Import Movies
        • Job: Import Micrographs
        • Job: Import Particle Stack
        • Job: Import 3D Volumes
        • Job: Import Templates
        • Job: Import Result Group
        • Job: Import Beam Shift
      • Motion Correction
        • Job: Patch Motion Correction
        • Job: Full-Frame Motion Correction
        • Job: Local Motion Correction
        • Job: MotionCor2 (Wrapper) (BETA)
        • Job: Reference Based Motion Correction (BETA)
      • CTF Estimation
        • Job: Patch CTF Estimation
        • Job: Patch CTF Extraction
        • Job: CTFFIND4 (Wrapper)
        • Job: Gctf (Wrapper) (Legacy)
      • Exposure Curation
        • Job: Micrograph Denoiser (BETA)
        • Job: Micrograph Junk Detector (BETA)
        • Interactive Job: Manually Curate Exposures
      • Particle Picking
        • Interactive Job: Manual Picker
        • Job: Blob Picker
        • Job: Template Picker
        • Job: Filament Tracer
        • Job: Blob Picker Tuner
        • Interactive Job: Inspect Particle Picks
        • Job: Create Templates
      • Extraction
        • Job: Extract from Micrographs
        • Job: Downsample Particles
        • Job: Restack Particles
      • Deep Picking
        • Guideline for Supervised Particle Picking using Deep Learning Models
        • Deep Network Particle Picker
          • T20S Proteasome: Deep Particle Picking Tutorial
          • Job: Deep Picker Train and Job: Deep Picker Inference
        • Topaz (Bepler, et al)
          • T20S Proteasome: Topaz Particle Picking Tutorial
          • T20S Proteasome: Topaz Micrograph Denoising Tutorial
          • Job: Topaz Train and Job: Topaz Cross Validation
          • Job: Topaz Extract
          • Job: Topaz Denoise
      • Particle Curation
        • Job: 2D Classification
        • Interactive Job: Select 2D Classes
        • Job: Reference Based Auto Select 2D (BETA)
        • Job: Reconstruct 2D Classes
        • Job: Rebalance 2D Classes
        • Job: Class Probability Filter (Legacy)
        • Job: Rebalance Orientations
        • Job: Subset Particles by Statistic
      • 3D Reconstruction
        • Job: Ab-Initio Reconstruction
      • 3D Refinement
        • Job: Homogeneous Refinement
        • Job: Heterogeneous Refinement
        • Job: Non-Uniform Refinement
        • Job: Homogeneous Reconstruction Only
        • Job: Heterogeneous Reconstruction Only
        • Job: Homogeneous Refinement (Legacy)
        • Job: Non-uniform Refinement (Legacy)
      • CTF Refinement
        • Job: Global CTF Refinement
        • Job: Local CTF Refinement
        • Job: Exposure Group Utilities
      • Conformational Variability
        • Job: 3D Variability
        • Job: 3D Variability Display
        • Job: 3D Classification
        • Job: Regroup 3D Classes
        • Job: Reference Based Auto Select 3D (BETA)
        • Job: 3D Flexible Refinement (3DFlex) (BETA)
      • Postprocessing
        • Job: Sharpening Tools
        • Job: DeepEMhancer (Wrapper)
        • Job: Validation (FSC)
        • Job: Local Resolution Estimation
        • Job: Local Filtering
        • Job: ResLog Analysis
        • Job: ThreeDFSC (Wrapper) (Legacy)
      • Local Refinement
        • Job: Local Refinement
        • Job: Particle Subtraction
        • Job: Local Refinement (Legacy)
      • Helical Reconstruction
        • Helical symmetry in CryoSPARC
        • Job: Helical Refinement
        • Job: Symmetry search utility
        • Job: Average Power Spectra
      • Utilities
        • Job: Exposure Sets Tool
        • Job: Exposure Tools
        • Job: Generate Micrograph Thumbnails
        • Job: Cache Particles on SSD
        • Job: Check for Corrupt Particles
        • Job: Particle Sets Tool
        • Job: Reassign Particles to Micrographs
        • Job: Remove Duplicate Particles
        • Job: Symmetry Expansion
        • Job: Volume Tools
        • Job: Volume Alignment Tools
        • Job: Align 3D maps
        • Job: Split Volumes Group
        • Job: Orientation Diagnostics
      • Simulations
        • Job: Simulate Data (GPU)
        • Job: Simulate Data (Legacy)
    • CryoSPARC Tools
    • Data Processing Tutorials
      • Case study: End-to-end processing of a ligand-bound GPCR (EMPIAR-10853)
      • Case Study: DkTx-bound TRPV1 (EMPIAR-10059)
      • Case Study: Pseudosymmetry in TRPV5 and Calmodulin (EMPIAR-10256)
      • Case Study: End-to-end processing of an inactive GPCR (EMPIAR-10668)
      • Case Study: End-to-end processing of encapsulated ferritin (EMPIAR-10716)
      • Case Study: Exploratory data processing by Oliver Clarke
      • Tutorial: Tips for Membrane Protein Structures
      • Tutorial: Common CryoSPARC Plots
      • Tutorial: Negative Stain Data
      • Tutorial: Phase Plate Data
      • Tutorial: EER File Support
      • Tutorial: EPU AFIS Beam Shift Import
      • Tutorial: Patch Motion and Patch CTF
      • Tutorial: Float16 Support
      • Tutorial: Particle Picking Calibration
      • Tutorial: Blob Picker Tuner
      • Tutorial: Helical Processing using EMPIAR-10031 (MAVS)
      • Tutorial: Maximum Box Sizes for Refinement
      • Tutorial: CTF Refinement
      • Tutorial: Ewald Sphere Correction
      • Tutorial: Symmetry Relaxation
      • Tutorial: Orientation Diagnostics
      • Tutorial: BILD files in CryoSPARC v4.4+
      • Tutorial: Mask Creation
      • Case Study: Yeast U4/U6.U5 tri-snRNP
      • Tutorial: 3D Classification
      • Tutorial: 3D Variability Analysis (Part One)
      • Tutorial: 3D Variability Analysis (Part Two)
      • Tutorial: 3D Flexible Refinement
        • Installing 3DFlex Dependencies (v4.1–v4.3)
      • Tutorial: 3D Flex Mesh Preparation
    • Webinar Recordings
  • Real-time processing in cryoSPARC Live
    • About CryoSPARC Live
    • Prerequisites and Compute Resources Setup
    • How to Access cryoSPARC Live
    • UI Overview
    • New Live Session: Start to Finish Guide
    • CryoSPARC Live Tutorial Videos
    • Live Jobs and Session-Level Functions
    • Performance Metrics
    • Managing a CryoSPARC Live Session from the CLI
    • FAQs and Troubleshooting
  • Guides for v3
    • v3 User Interface Guide
      • Dashboard
      • Project and Workspace Management
      • Create and Build Jobs
      • Queue Job, Inspect Job and Other Job Actions
      • View and Download Results
      • Job Relationships
      • Resource Manager
      • User Management
    • Tutorial: Job Builder
    • Get Started with CryoSPARC: Introductory Tutorial (v3)
    • Tutorial: Manually Curate Exposures (v3)
  • Resources
    • Questions and Support
Powered by GitBook
On this page
  • HA Trimer Case Study
  • Untilted dataset (EMPIAR 10096)
  • Tilted dataset (EMPIAR 10097)
  • References
  1. Processing Data in cryoSPARC
  2. Data Processing Tutorials

Tutorial: Orientation Diagnostics

Using the new Orientation Diagnostics job to assess preferred orientation with titled and untilted HA Trimer data

PreviousTutorial: Symmetry RelaxationNextTutorial: BILD files in CryoSPARC v4.4+

Last updated 1 year ago

Orientation Diagnostics, a new job in CryoSPARC v4.4+, can help diagnose the presence of preferred orientation. In this tutorial, we’ll use the untilted and tilted Influenza Hemagglutinin Trimer (HA Timer) data (Tan et al. (2017); deposited in EMPIAR entries 10096 and 10097 respectively) to help elucidate the types of diagnostics one should expect to see with and without preferred orientation.

HA Trimer Case Study

Untilted dataset ()

To begin, we’ll process the deposited 447 movies via a typical CryoSPARC processing workflow of Patch Motion, Patch CTF, Blob picking / curation, 2D classification, 2D class selection, and Ab-Initio reconstruction to arrive at a set of ~82 000 curated particles and an initial map. Refining this initial volume with homogeneous refinement with C3 symmetry yields a structure with a reported GSFSC resolution of ~3.1 Å (see figure below). By inspecting the volume visually, however, we see that the map lacks the features one would expect at this resolution.

What’s more, the vertical streaks in the map are clear indications that the poor quality may be due to the presence of preferred orientation within the particles. To assess further, we’ll take the refined volume, mask, and particles and connect it to an Orientation Diagnostics job, and set the symmetry parameter to C3.

Orientation Diagnostics

Once complete, orientation diagnostics will generate a number of visualizations. One natural starting point to investigate preferred orientation is to look at the conical FSC summary plot. This plot generalizes the GSFSC curves shown above to incorporate the notion of directional resolution. Note that this plot shows very similar information to the figure generated via the legacy 3DFSC job (Tan et al., 2017).

A conical FSC (cFSC) is a Fourier Shell Correlation of two half maps with a conical mask of a specified half angle and axis in Fourier space. To assess directional signal content, the Orientation Diagnostics job computes a set of cFSC curves with conical axes sampled along a uniform spherical distribution. The figure below illustrates this process for four cFSC cones. In blue, the cFSC summary plot visualizes the mean, minimum, maximum, and standard deviation value of the correlations at each spatial frequency. In green, we also overlay a histogram of 0.143 crossings, which correspond to the spread of resolution values over direction.

Although they can both be represented via azimuth and elevation angles, the conical axis of a cFSC should be carefully distinguished from viewing direction. Concretely, low cFSC values along a particular conical axis do not imply that more views are necessary from that direction. This is due to the fact that a particle contributes Fourier information to a Fourier slice whose components are orthogonal to the viewing direction — this fact is elucidated further in the mathematical definition of the SCF within the Orientation Diagnostics job page, and in the SCF publications (Baldwin and Lyumkis, 2020, 2021).

When cFSC curves do not vary significantly as function of conical axis, the structure has a directional resolution that is constant across the viewing sphere. Here, this is clearly not the case. In the worst case, we see a cFSC resolution worse than 11 Å!

To quantify orientation bias, Orientation Diagnostics provides two metrics: the conical FSC Area Ratio, or cFAR, and the Sampling Compensation Factor, or SCF*. Both metrics range from 0 to 1, where 0 indicates a strong orientation bias, and 1 indicates no bias.

In this dataset, cFAR is 0.02, which indicates severe orientation bias. In general, we find that a cFAR value of 0.5 serves as a reasonable threshold for the presence, or lack thereof, of preferred orientation.

To complement cFAR, we also report the Sampling Compensation Factor (Baldwin & Lyumkis, 2020, 2021). The SCF assesses the degree to which certain Fourier voxels are under sampled by the set of particle alignments. It is important to note that SCF does not consider the signal content within each particle; junk particles and true particles contribute equally to the final metric. An SCF value of 0.81 corresponds to the case where we have one ‘band’ of viewing directions. As a result, the original authors of SCF (Baldwin and Lyumkis, 2021) argue that values above 0.81 generally indicate good sampling (though not necessarily isotropic signal content).

To see the effect of stage tilting on this data, we turn to the data deposited in EMPIAR entry 10097. As before, we process the raw movies using a typical CryoSPARC workflow to arrive at an initial volume and approximately 58,000 curated particles. We then apply homogeneous refinement with C3 symmetry and arrive at the map depicted below. Note that the global GSFSC resolution is actually worse than the untilted data, but visually the map quality is significantly improved.

Applying the Orientation Diagnostics job (with C3 symmetry set) to the outputs of this refinement, we see much higher cFAR and SCF scores, much smaller cFSC curve variation and directional resolutions that only differ by approximately 0.5 Å. We see further that in many cases, the cFAR score is more sensitive to directional anisotropy than SCF* as it accounts for both insufficient sampling of the Fourier domain, and for anisotropic distributions of signal (e.g., junk optimized into certain regions).

References

Tan et al. (2017), Addressing preferred specimen orientation in single-particle cryo-EM through tilting. Nat Methods 14(8), 793-796.

Baldwin, P. R., & Lyumkis, D. (2020). Non-uniformity of projection distributions attenuates resolution in Cryo-EM. Progress in biophysics and molecular biology 150, 160-183.

Baldwin, P. R., & Lyumkis, D. (2021). Tools for visualizing and analyzing Fourier space sampling in Cryo-EM. Progress in biophysics and molecular biology 160, 53-65.

cFAR is the ratio of the minimum to maximum area under the cFSC curves summarized above. To account for the fact that higher frequencies correspond to a larger shell of Fourier components, the area is weighted at each spatial frequency by the surface area of the corresponding shell in Fourier space. In other words, we summarize each cFSC with a weighted area-under-curve number (’wAuC’), that quantifies the total ‘mass’ of the cFSC cone in units of correlation. wAuC as a function of conical axis on the viewing sphere is shown in the plot above. The ratio of the minimum to the maximum value in this plot defines the cFAR. For a mathematical definition of cFAR and wAuC, please see the.

Tilted dataset ()

Orientation Diagnostics job page
EMPIAR 10097
EMPIAR 10096
HA Trimer (untilted data)
By computing multiple conical FSC curves, we can assess how correlation varies as a function of direction.
HA Trimer (tilted data)